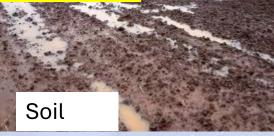
10 Water Lessons for Tucson

This unit teaches students about the water cycle with a focus on how Tucson benefits from the Colorado River and CAP (Central Arizona Project Aqueduct). Students learn about the Hohokam people and the importance water to their community. Students then learn about the Agua Nueva Reclamation Facility and how the reclaimed water is bringing back the Santa Cruz River. Students also do a water quality lab where they test their own tap water from home. Each lesson in the unit can be taught alone or alongside other lessons.

Science Standard: 7.E1U1.5 Construct a *model* that shows the cycling of matter and flow of energy in the atmosphere, **hydrosphere**, and geosphere.

Lesson 1


Learning Target:

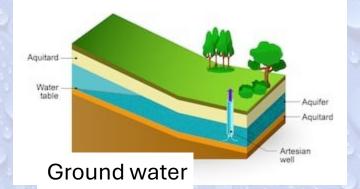
I am learning where water can be found on Earth.

Success Criteria:

- -I can explain how water droplets move from place to place on Earth.
- -I can make a bar graph displaying where I have been as a water droplet.
- -I can gather class data and graph to determine where the class has traveled the most as a water droplet.
- -I can write a conclusion based on my data.

Where water can be found?

River



Plant

GROUNDWATER

Instructions

Materials

- 1 dice per group
- 1 plate per group
- Groups of 3 students (one rolls the dice, one records, one holds the plate)

Procedures:

- 1. Each group decides the location they want to begin (if too many in one section, teacher decides where they should begin). There are a total of 9 water locations.
- 2. Each group rolls the dice and follows the handout as to where they go next. Each group tallies and keeps track where they go each time.
- 3. Teacher allows students to do this activity for 10 minutes so each group can gather data.
- 4. When done, students will make a bar graph with the group data and write a conclusion.
- 5. When done, each group will then share their data with the class and teacher collects data.
- 6. Students make another bar graph on Excel, using the class data as well as write a conclusion.

Water-Location Poster PLANT

WHAT YOU ROLL	WHAT HAPPENS TO YOU	WHERE YOU GO
1, 2, 3, or 4	Water leaves a plant through the process of transpiration.	Atmosphere
5 or 6	Water is used by a plant and stays in cells. Roll again.	Plant

Investigation 7: The Water Planet

Water-Location Poster

GROUNDWATER

WHAT YOU ROLL	WHAT HAPPENS TO YOU	WHERE YOU GO
1 .	Water filters into a river.	River
2 or 3	Water filters into a lake.	Lake
4, 5, or 6	Water stays underground in an aquifer. Roll again.	Groundwater

GROUNDWATER

Investigation 7: The Water Planet

stigation 7. The water Planet

369

The Regents of the University of California
 The Regents of the University of California
 The duplicated for classroom or workshop

Water-Location Poster

1	GLACIER	
WHAT YOU ROLL	WHAT HAPPENS TO YOU	WHERE YOU GO
1	Ice melts and water filters into the ground.	Groundwater
2	Ice sublimates (turns directly from ice into water vapor) and goes into the atmosphere.	Atmosphere
3	Ice melts and water flows into a river.	River
4	Ice melts and water flows into the ocean.	Ocean
5 or 6	Ice stays frozen in the glacier. Roll again.	Glacier

Investigation 7: The Water Planet

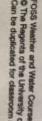
FOSS Kit

Water-Location Poster LAKE

WHAT YOU ROLL	WHAT HAPPENS TO YOU	WHERE YOU GO
1	Water filters into the soil.	Soil
2	An animal drinks water.	Animal
3	Water flows into a river.	River
4	Water heats up and evaporates.	Atmosphere
5 or 6	Water remains within a lake or estuary. Roll again.	Lake

Investigation 7: The Water Planet

Water-Location Poster ATMOSPHERE


WHAT YOU ROLL	VHAT YOU ROLL WHAT HAPPENS TO YOU	
1	1 Water condenses and falls on soil.	
2	2 Water condenses and falls as snow on a glacier.	
3	Water condenses and falls on a lake.	Lake
4 or 5 Water condenses and falls on an ocean.		Ocean
6	Water remains as vapor in the atmosphere. Roll again.	Atmosphere

Investigation 7: The Water Planet

FOSS Kit

367

Water-Location Poster

ANIMAL

WHAT YOU ROLL	WHAT HAPPENS TO YOU	WHERE YOU GO
1 or 2	Water is excreted through feces and urine.	Soil
3, 4, or 5	Water is respired or evaporated from the body.	Atmosphere
6	Water is incorporated into the body. Roll again.	Animal

Investigation 7: The Water Planet

Water-Location Poster OCEAN

WHAT YOU ROLL	WHAT HAPPENS TO YOU	WHERE YOU GO
1 or 2	Water heats up and evaporates.	Atmosphere
3, 4, 5, or 6	Water remains in the ocean. Roll again.	Ocean

Investigation 7: The Water Planet

361

The Regents of the University of California In the duplicated for classroom or workshop u

FOSS Kit

Water-Location Poster RIVER

WHAT YOU ROLL WHAT HAPPENS TO YOU		WHERE YOU GO
1	Water flows into a lake.	Lake
2	Water filters into the soil.	Soil
3	Water flows into the ocean.	Ocean
4	An animal drinks water.	Animal
5	Water heats up and evaporates.	Atmosphere
6	Water remains in the river. Roll again.	River

Investigation 7: The Water Planet

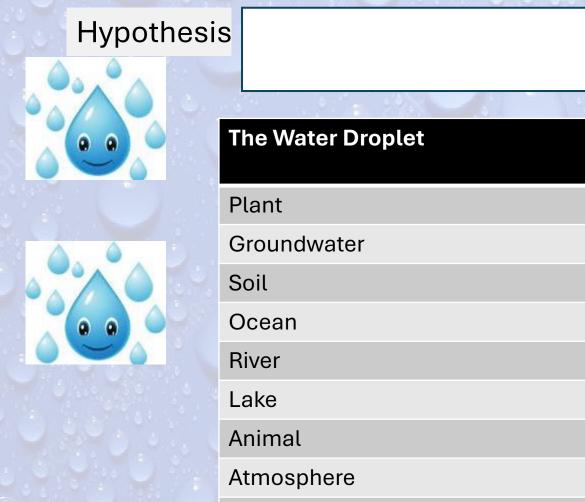
FOSS Kit

363

Water-Location Poster

SOIL

WHAT YOU ROLL	HAT YOU ROLL WHAT HAPPENS TO YOU	
1	Water is absorbed by plant roots.	Plant
2	Soil is saturated, so water runs into a river.	River
3	Water filters into the soil.	Soil
4 or 5	Heat evaporates the water.	Atmosphere
6	Water remains on the surface, in a puddle, or on a soil particle. Roll again.	Soil

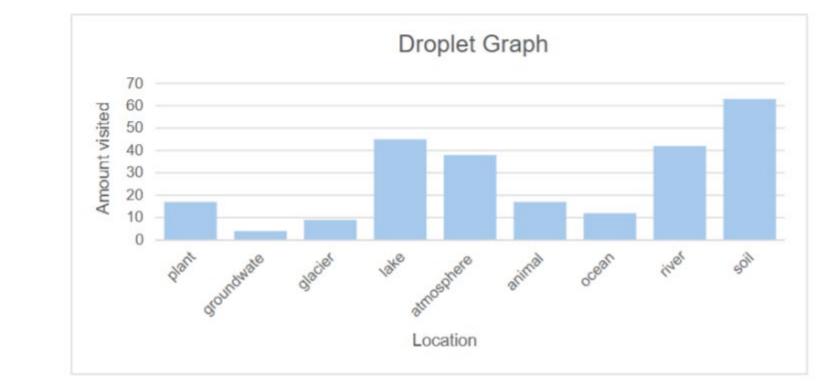

Investigation 7: The Water Planet

I am a water droplet. Where will I go?

How many times do I go there?

(tally)

Glacier



Class Data Table:

Water Droplet	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7	Group 8	Total	
Plant										
Groundwater										
Soil										
Ocean										
River										
Lake										
Animals										
Atmosphere										
Glacier										

Student Work: Class Data

plant	17
groundwater	4
glacier	9
lake	45
atmosphere	38
animal	17
ocean	12
river	42
soil	63

Students used Excel when graphing the class data.

Lesson 2

Learning Target:

I am learning about the water cycle and its importance for all living things.

Success Criteria:

-I can explain what is evaporation, condensation, precipitation, transpiration, groundwater, and aquifers are to a peer.

- -I can explain the importance of the Sun in the water cycle.
- -I can create a model that illustrates the water cycle in Tucson, Az.

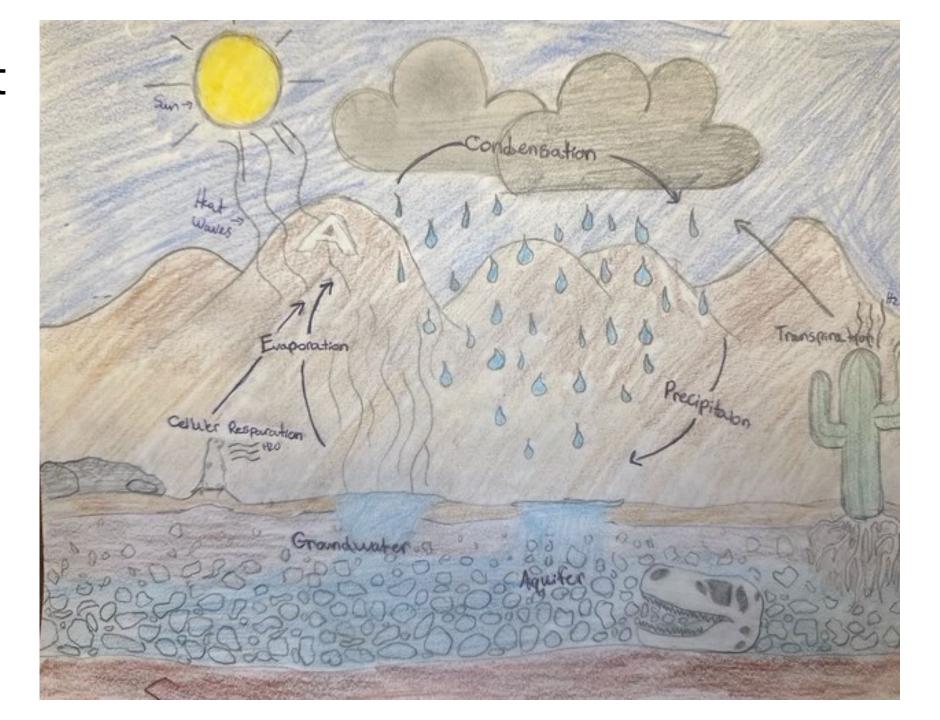
The Water Cycle Assignment

- **1. Draw** the setting in Tucson, AZ (examples "A" mountain, saguaros, the University of Arizona etc).
- **2.** Draw and label the 3 ways water enters the atmosphere and label them (evaporation, organisms breathing out and, transpiration).
- **3. Draw the water cycle** and **label** evaporation, condensation, precipitation, and collection.
- **4. Draw and label** the source and that makes evaporation possible (the Sun).
- 5. Draw and label groundwater and an aquifer.

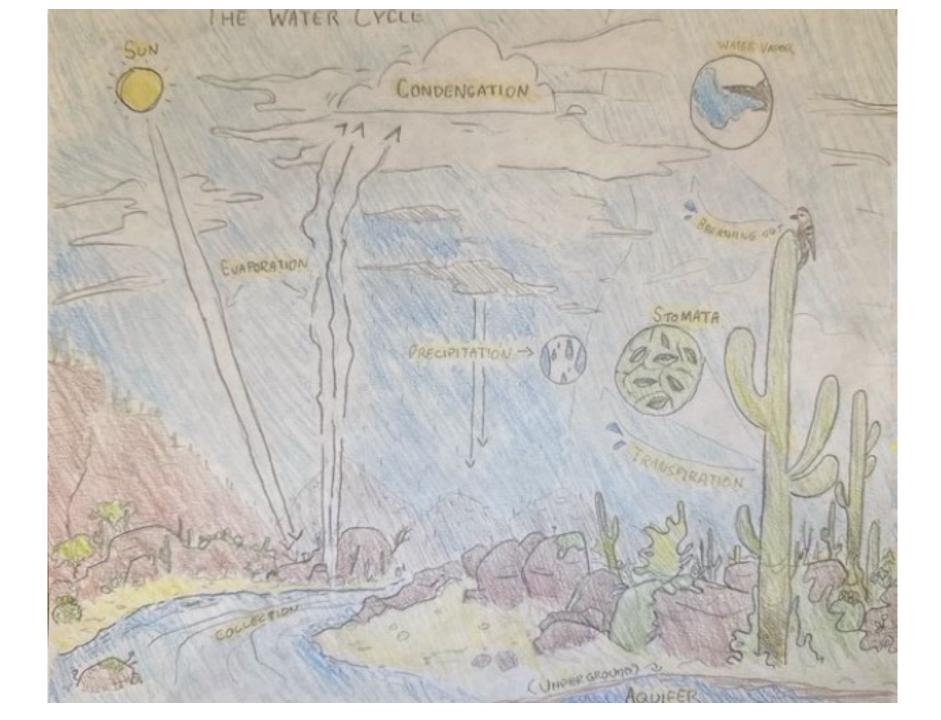
6. Writing: Explain how water enters the atmosphere (#2). Explain what is the water cycle (#3). Explain the importance of the Sun (#4). Explain what is groundwater and an aquifer (#5). Explain where your drawing is located (#1). Finally, explain why water is important.

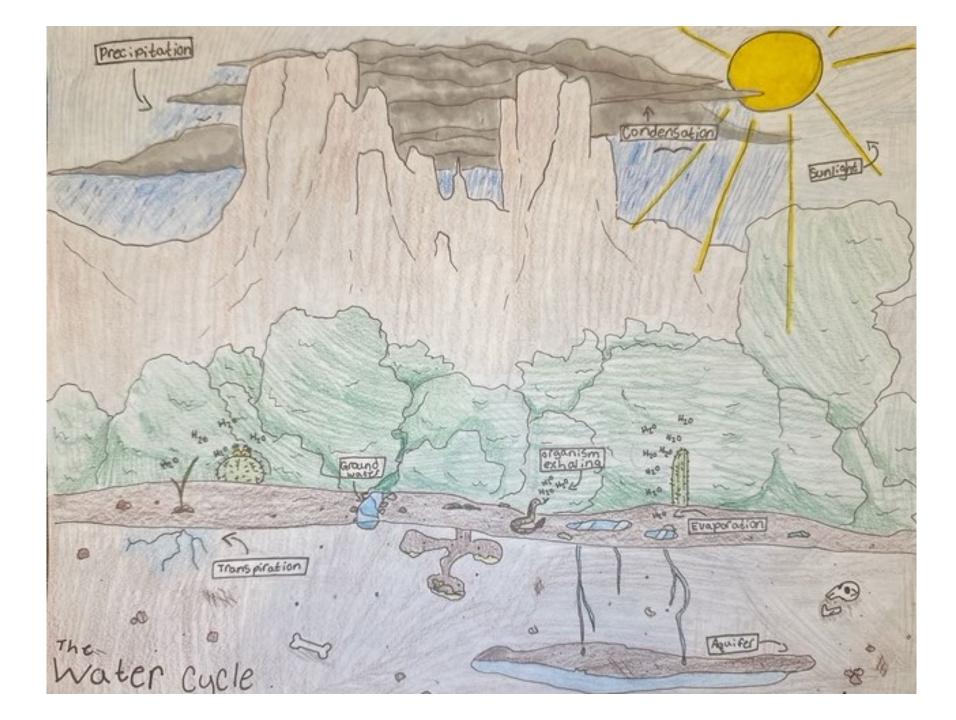
(Write at least 2 paragraphs. Writing needs to be in complete sentences, check grammar, spelling, and capitalization.)

7. Color and hand-in. Must be neat and presentable. See Rubric.


Rubric

EVAPORATION


Rubric	4	3	2	1
Neatness	The model and	The model and	The model is	The poster is not
	writing is very neat	writing is	somewhat neat	neat.
	and legible. Color is	presentable.	but needs	
	present.	Color is present.	attention.	
			The setting is in	The setting is not in
	The setting is in	The setting is in	Tucson, AZ.	Tucson, AZ.
	Tucson, AZ.	Tucson, AZ.		
Water	Evaporation,	2 out the 3 are	1 out of 3 are	Neither is drawn or
entering the	Organisms	drawn, labeled	drawn, labeled	discussed in the
Atmosphere	breathing out, and	and discussed in	and discussed	model.
	Transpiration are	the writing.	in the writing.	
	drawn, labeled and			
	discussed in the			
	writing section in			
	great detail.			
Water Cycle	1.evaporation,	3 out of 4 words	2 out of 4	1 out of 4 words
	2.condensation,	within the water	words within	within the water
	3.precipitation,	cycle are drawn,	the water cycle	cycle are drawn,
	4. collection are	labeled, and	are drawn,	labeled, and
	labeled, drawn and	discussed in the	labeled and are	discussed in the
	discussed in the	writing.	discussed in the	writing.
	writing.		writing.	
Aquifer,	Aquifer,	2 out of 3 words	1 out of 3	Neither is drawn or
groundwater,	groundwater, and	are drawn in the	words are	discussed in the
and Sun.	<u>sun</u> are drawn,	model and are	drawn, labeled	model.
	labeled, and	discussed in the	in the model	
	discussed in the	writing.	and are	
	writing section.		discussed in the	
			writing.	
Writing	Complete	Complete	Sentences are	There is no
	sentences are	sentences are	not in complete	organization in the
	present.	present.	sentences.	writing.
	All sentences begin			
	with a capital letter	Most	Several	Many sentences
	and end with a	sentences begin	sentences have	are not in complete
	period. No	with a capital	grammatical	sentences.
	grammar errors or	letter and end	errors or	
	misspelled words	with a period.	misspelled	Many misspelled
	are present.	Some grammar	words.	words with
	See #6 (back) for	errors or		grammatical errors.
	questions that	misspelled words		
	need to be	are present.		
	answered.			
		Two paragraphs		
	Two paragraphs are	are present.		
	present.			


Student Work:

Student Work:

Student work:

Student work:

Water Cycle Writing My drawing is located at Saguaro National Park West where there is many cactuses and mountains. Water in the atmosphere is important. water onters the atmosphere by the heat from the Sun which causes water to evaporate from Oceans, lakes, streams, and other bodies of water. Evaporation happens when water turns into water vapor in our atmosphere. water from plants also enters the atmosphere which is known as transpiration. The water cycle is also important. The water cycle is the never-ending cycle of water within the Earth and atmosphere. The water cycle has 7 steps which are evaporation, condensation, precipitation, and collection. The Sun is extremly important for our planet. The sun is responsible for weather, ocean currents, seasons, climate, and making plant life possible through photosynthesis. Without the sun, life on Earth would not exist. Another impertant thing is ground water which is, water underground in saturated zones beneath the surface this includes the aquifer which is a collection of wet, underground rocks that allow water to

pass through it slewly. All these important things include water, one of the most important characteristics of life. Water is important because without it you will be extremly debydiated and will probably die. Also, everybody is made of about 55-60% of water, water is extremly crucial to life and that is why.

Student work:

Learning Target:

I am learning about the Grand Canyon and its importance to Tucson.

Success Criteria:

-I can explain the history of the Grand Canyon and the importance of the Colorado River that runs through it to a peer.

Tucson's Water

https://santacruz.arizona.edu/sites/default/files/2025-04/Tucson-Water-Unit-Side-26-Video.mp4

GRAND CANYON NATIONAL PARK

Location : Arizona

Established : 1919

Area : 1,877.5 Square Miles

Annual Visitors : 6,254,238

HISTORY

The first humans arrived in the area of the Grand Canyon around 10,500 years ago. However, the first permanent settlements only date from around 4,000 years ago. These early settlers, known as Pueblo people, built their homes in the many caves and overhangs of the canyon's walls. A long drought caused many ancient peoples to leave but other groups, most famously the Navajo, re-settled the canyon around 500 years ago. During the 1500s the Spanish sighted

the canyon for the first time during an expedition led by Francisco Coronado. The arrival of American settlers during the 1800s led to conflicts over land with the Navajo and other Native Americans eventually forced onto reservations.

In 1869 an expedition led by John Wesley Powell managed to raft through the entire canyon but they had no artist with them to record what they saw. Powell began another journey in 1872, this time with a photographer and painter. Their works helped to spread word of the canyon throughout the Untied States. Starting in the 1880s, several groups began lobbying the government to turn the canyon into a National Monument. However, they were opposed by ranchers and miners who

wanted to use the land for their businesses. In 1908 President Roosevelt created the Grand Canyon National Monument, saying that it was "the one great sight that every American should see." Railroads began transporting large numbers of people to the canyon where they stayed in several large lodges and hotels built near the rim. Farming and mining still continued in and around the canyon, causing huge damage to the land as well as pollution.

Stephen Mather wanted to turn the canyon into a National Park but his efforts were blocked by Ralph Henry Cameron, a wealthy Arizona landowner who had managed to get elected to the U.S. Senate. Cameron had set up several lodges and controlled access to trails - charging high fees for entrance and water. In 1919, Congress created Grant Canyon National Park and in 1920 the Supreme Court ordered Cameron to give up his land and mining claims but he simply ignored them. He then made plans to build two huge dams in the canyon as well as a huge platinum mine. Mather and his allies managed to get newspapers to report on how Cameron was using his position in the Senate to enrich himself. In 1926 the people of Arizona refused to re-elect him, finally forcing Cameron to give in. **Teachers Pay Teachers**

Free: https://ww w.teachers payteacher s.com/Prod uct/Grand-Canyon-National-Park-**Project-**Materials-3828611

GEOGRAPHY

The rocks which can be seen at the Grand Canyon date from between 1.7 billion and 230 million years ago. Most of these rock layers were laid down in shallow seas and swamps which once existed over what is now the western United States.

Around 75 million years ago, the lands in and around the Canyon began to slowly rise up – eventually reaching a height of 2 miles above sea level. This process also led to the creation of the Colorado River which began to cut its way through the rock down to sea level. A

change in the climate around 6 million years ago led to much greater rainfall in the region, increasing the speed and size of the river and also its power.

As the river cut its way down its course was continually changing, creating a deep and wide canyon. The canyon walls were then further eroded by rain and ice which weakened and then cracked the rock. Today the Grand Canyon has an average width of 10 miles and an average depth of

just over 1 mile. From east to west the canyon stretches for 277 miles making it the longest of Earth.

WILDLIFE

Differences in elevation have created several different climate zones in and around the Grand Canyon. Large mammals in the park include deer, sheep, black bears, and elk. Smaller mammals include squirrels, raccoons, and beavers.

The Grand Canyon is home to many different species of snakes and lizards. There are also large populations of scorpions and insects. Many birds make their homes on the canyon's walls, including condors, owls, hawks, falcons, and vultures.

Areas of the canyon near the river are dominated by small plants such as willow and acacia. The canyon walls are populated by small plants whose roots are dug into the rock. Higher areas of the park are covered with spruce and fir trees along with various shrubs and cacti.

Teachers Pay Teachers

Location : Arizona

Established : 1919

Area : 1,877.5 Square Miles

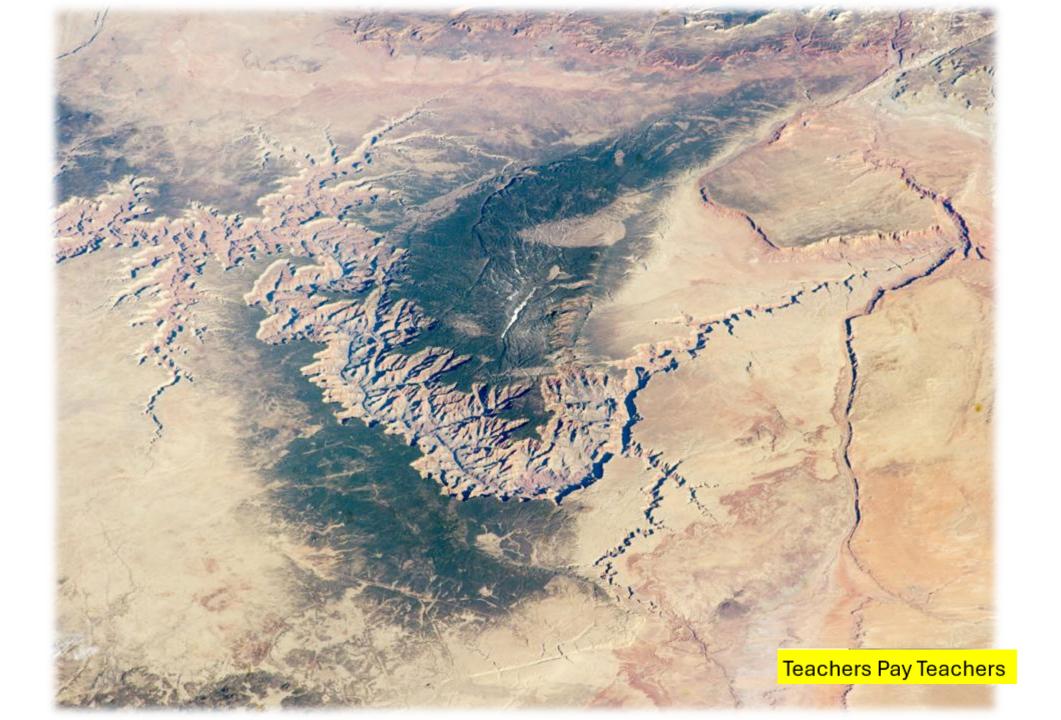
Annual Visitors : 6,254,238

Animals & Plants

History

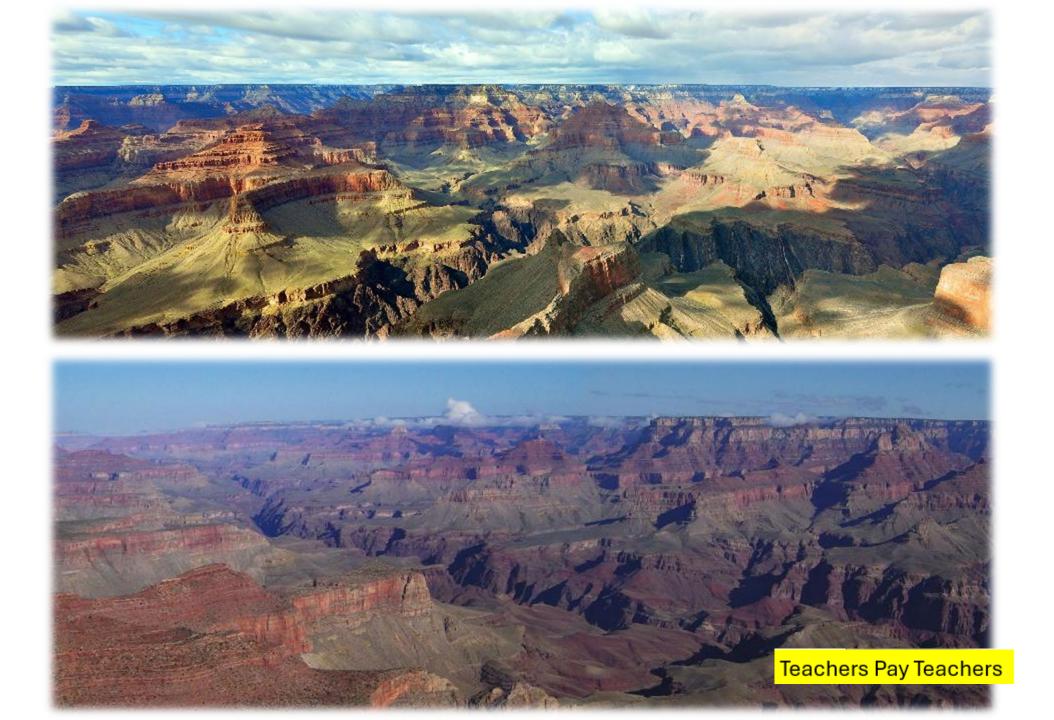
- The first humans began living near Grand Canyon around 10,500 years ago. Later Pueblo
 people built their homes in the canyon's walls. Around 500 years ago a people called t
 he Navajo settled in the area. During the 1500s the Spanish, led by Francisco Coronado,
 first saw the canyon. During the 1800s conflicts with new American settlers led to the
 Navajo being forced into reservations.
- An explorer, John Wesley Powell, made several trips through the canyon in the 1870s. His books helped to spread interest in the canyon but attempts to create a National Monument were opposed by ranchers and miners. In 1908, Roosevelt created the Grand Canyon National Monument. Railroads then began transporting large numbers of tourists to the area. However, farming and mining continued causing huge damage. Attempts to create a National Park were opposed by Ralph Cameron, a wealthy landowner and senator who made a fortune by ripping off tourists. In 1919 Congress created Grand Canyon National Park but Cameron simply ignored them and made plans to build dams and a mine. Finally Cameron was voted out of the Senate and had to give up his lands.

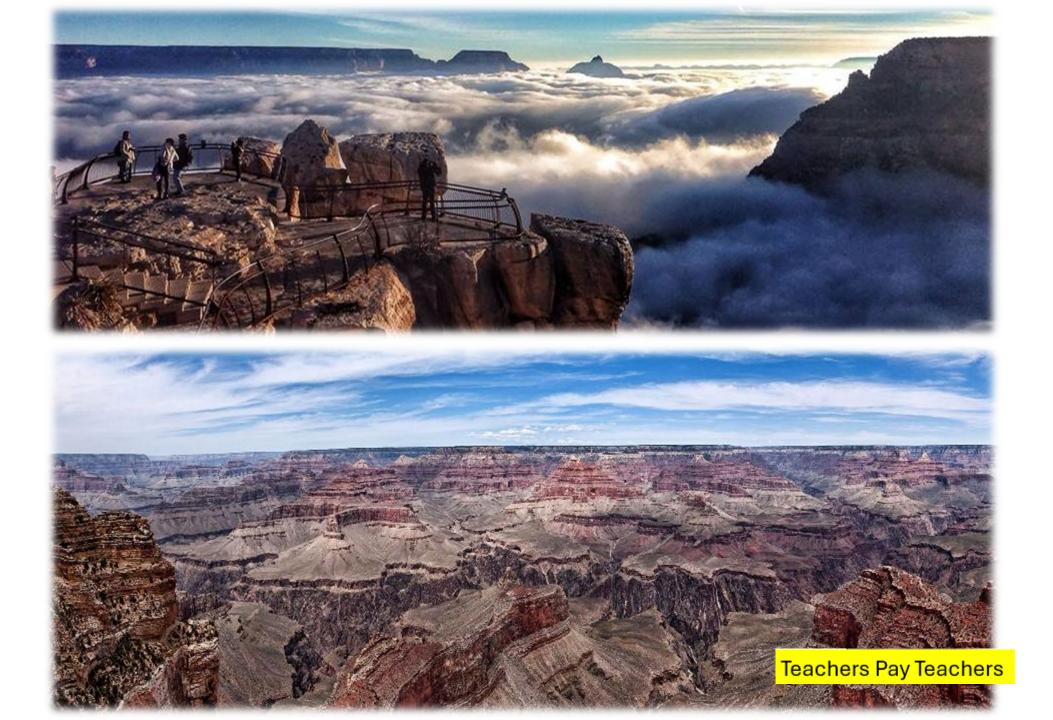
Geography

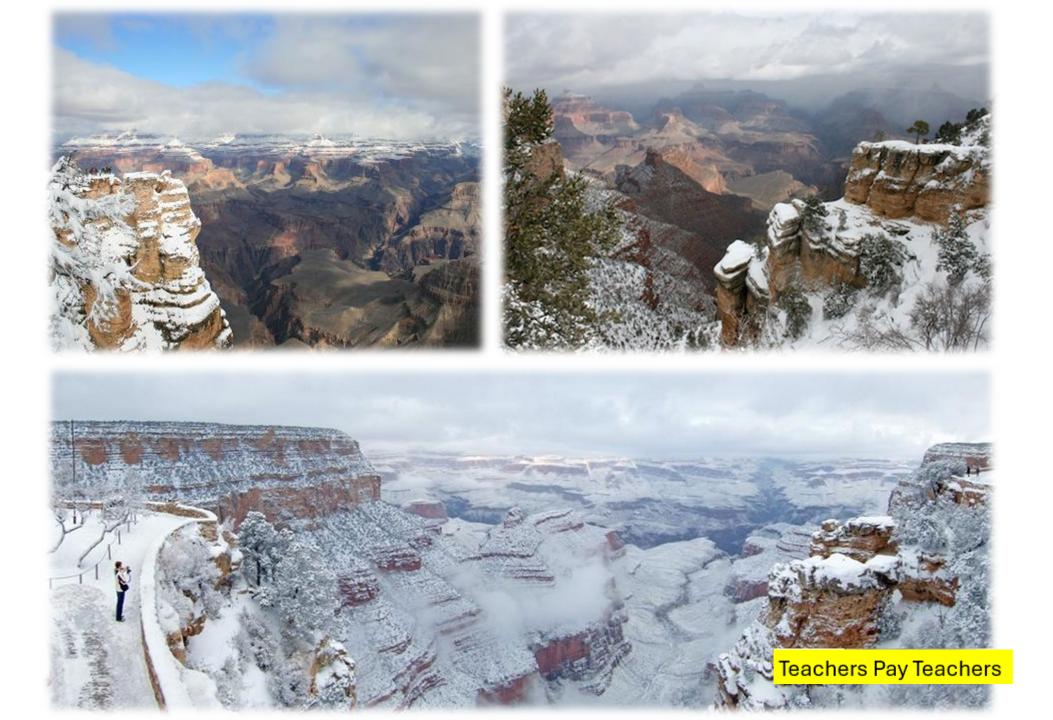

- The oldest rocks at Grand Canyon are 1.7 billion years old. Most layers were created when the area was under a shallow sea. Around 75 million years ago the lands began to rise up to heights of up to 2 mile above sea level. The Colorado river then began cutting its way through the rock. As its course changed it created a wide and deep canyon. Its sides were then further eroded by rain and ice. Today the Grand Canyon has an average width of 10 miles and depth of 1 mile. From east to west it is 277 miles long.
- Mammals : Deer, sheep, black bears, elk, squirrels, raccoons, beavers

Reptiles : Snakes, lizards A

Arthropods : Scorpions


• Birds : Condors, owls, hawks, falcons, vultures Plants : Willow, acacia, shrubs, spruce, fir, cacti


Teachers Pay Teachers



Teachers Pay Teachers

The Grand Canyon Brochure

WILDLIFE	GRAND CANYON NATIONAL PARK
HISTORY	GEOGRAPHY

Brochure assignment- (at least two drawings are needed per section)

1.Grand Canyon National Park-

Include the following-

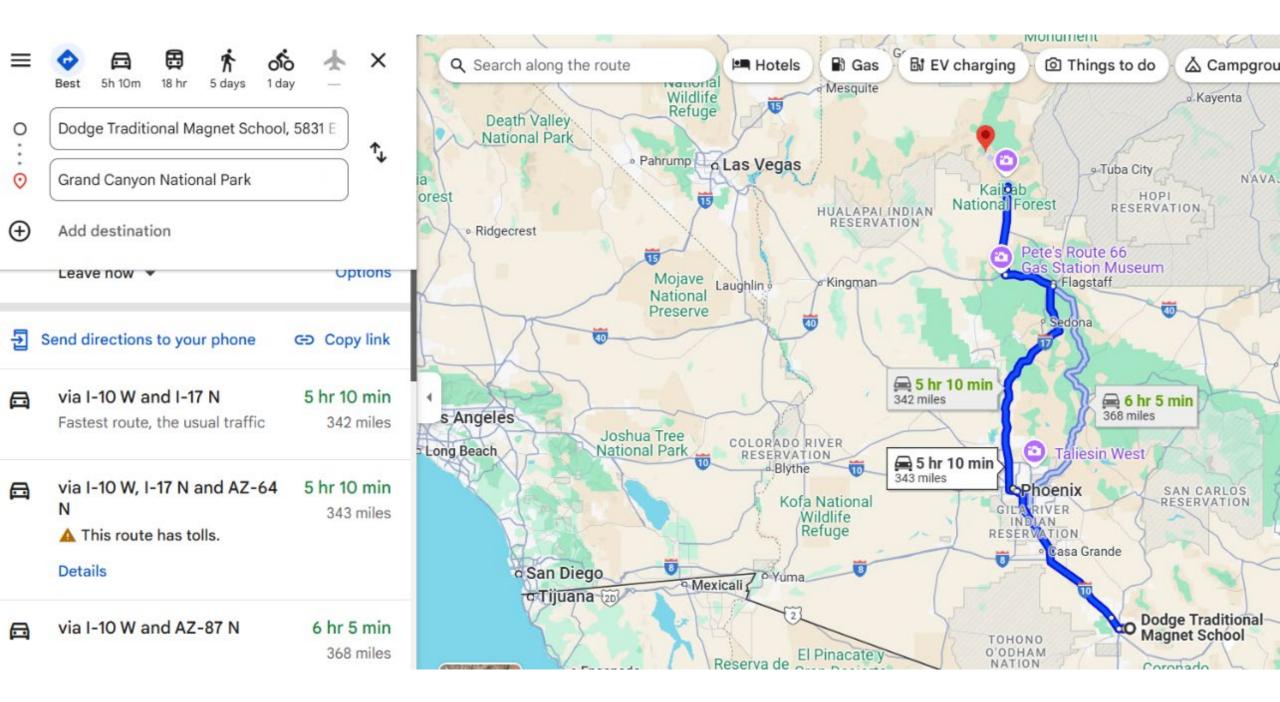
- 1. Drawing (with color) of the Grand Canyon.
- 2. Map of Arizona highlighting the Grand Canyon
- 3. Directions of how to get there from Dodge.

2.History-

Include the following-

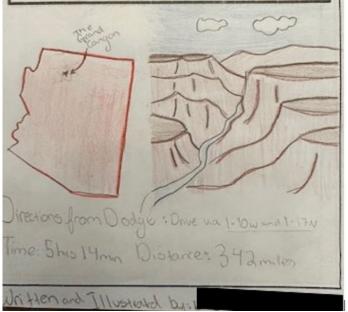
- 1. The history of the people that first settled in the Grand Canyon (Pueblo, Navajo).
- 2. The history of how the Spanish sighted the Grand Canyon (led by Coronado)
- The history of the American settlers (1869 expedition led by Powell, reservations).
- 4. How the Grand Canyon became a National Park.

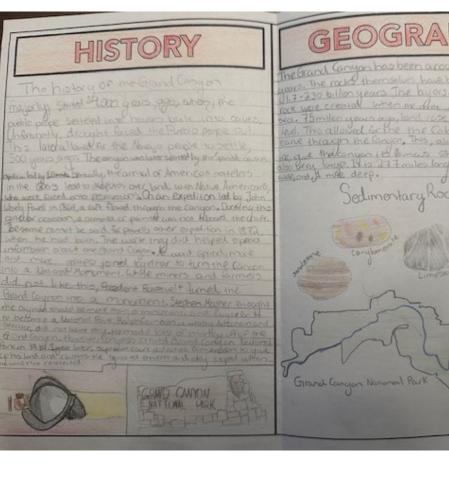
3.Geography-


Include the following-

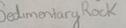
- 1. What type of rock is found in the Grand Canyon?
- 2. How was it shaped?
- 3. What runs along the Grand Canyon (Colorado River)?
- 4. How large is the river (wide and depth)?

4.Wildlife-


Include the following-


1. What organisms can visitors expect to see when visiting.

Student Work:


GRAND CANYON NATIONAL PARK

GEOGRAPHY

The Grand Canyon has been accord the millions of users the rack themselves have been a cound Br 117-230 billion years. The byers opposimentery my were created when we draw unsurriser a sent Tad. This allowed for the the Colorado Ruer to cane through the Paryon, This, along with roun and are que thekanyon it kmas shape The cargonis 100 lenn large, It is 277 miles long, as well as domile

WILDLIFE

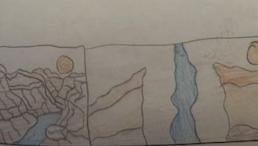
when one visito the Grand Congon, they will see man different types of wild life. Mamroals include, but are not limital to deer, block brown, elk, sheep, raccounts and sources. This is due to the diversity of Climate zones. Theare, mammals are not the only type of animal to call the Canyon home. Snakes literas, insels, scorpions, outs, hands, and vellera to as well. Not only a the Grand cango known for it's direct animals, behalo it's plans. Where ever a weiter finds themselves, plants will be around. Spice trees, fir trees, shrubs, and cost are common in higher grand. Even small plants can be Rend on the congo walls. Near the river, willow and a car are hold not lo miss.

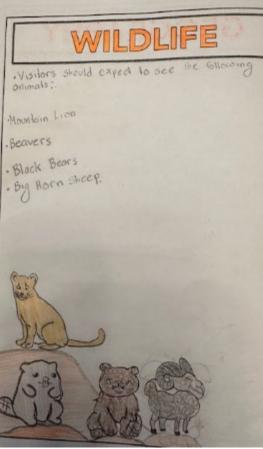
Student Work:

Shours and 19 minutes to drive. brond Coyon

National

Park


Location Arizona Established: AA Area: 1,877.5 Square Miles Annual Visitors: 6,254,238 It takes 342 miles to get there


Canyon

HISTORY and maps of the area. Uver time, many seliler ion downation visited by millions of people a se

GEOGRAPHY . The type OF rock that is found in the Grand Cayon is the Sedimentory rock, which is layered rocks. . The Grand Cayon was formed partially by the Colorado River, then later on it eraded from ice and rain. . The water that runs through the brand conyon is the Colorado River. . The Colorado river is as deep as 90 feet and as long as 200 reet.

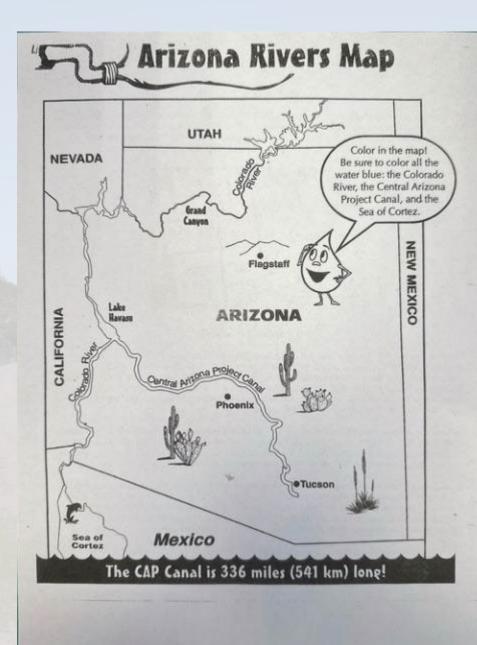
<u>Learning Target:</u>

-I am learning about the Colorado River, Central Arizona Project (CAP), reclaimed water and its importance to Tucson.

Success Criteria:

-I can explain the impact CAP and reclaimed water has on Tucson's water supply.

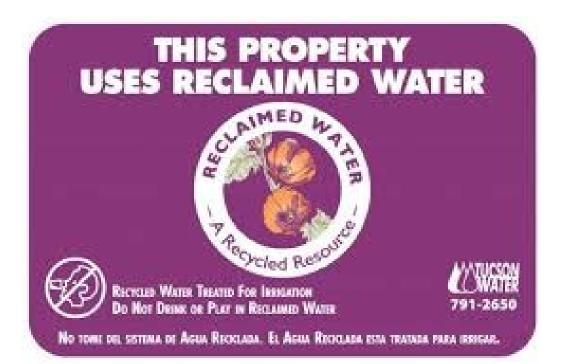
-I can explain how Tucson's water supply has changed over time.


The Colorado River Video

https://santacruz.arizona.edu/sites/default/files/2025-04/Tucson-Water-Unit-Slide-43-Video.mp4

Colorado River

• Before CAP (Central Arizona Project)



Reclaimed Water Video

https://www.youtube.com/watch?v=ist-8l5cfSc

Reclaimed Water (purple pipes)

Learning Target:

I am learning about Tucson's groundwater so I can appreciate the water I drink.

Success Criteria:

-I can explain how groundwater is pumped and delivered to our homes.

-I can explain how reclaimed water helps us save drinking water in Tucson.

-I can explain how dumping chemicals on the ground pollutes our groundwater.

Arizona Project Wet with Lexi and Brian

Learning Target:

I am learning about the early years of the Santa Cruz River and how it has changed over time.

Success criteria:

I can explain how Tucson's water supply has changed over time.

The Hohokam Water Story

Written by Arizona Project WET and Illustrated by Pearl Lam

Questions to Deepen Your Thinking

1. What do you wonder about the relationship that Native Americans, such as the Hohokam, had with water?

- 2. In what ways, did Native Americans use science to improve their lives?
- 3. How did Native Amercans apply engineering practices to solve problems?

4. Why did the level of surface water in the Santa Cruz River go down as the population of Tucson grew?

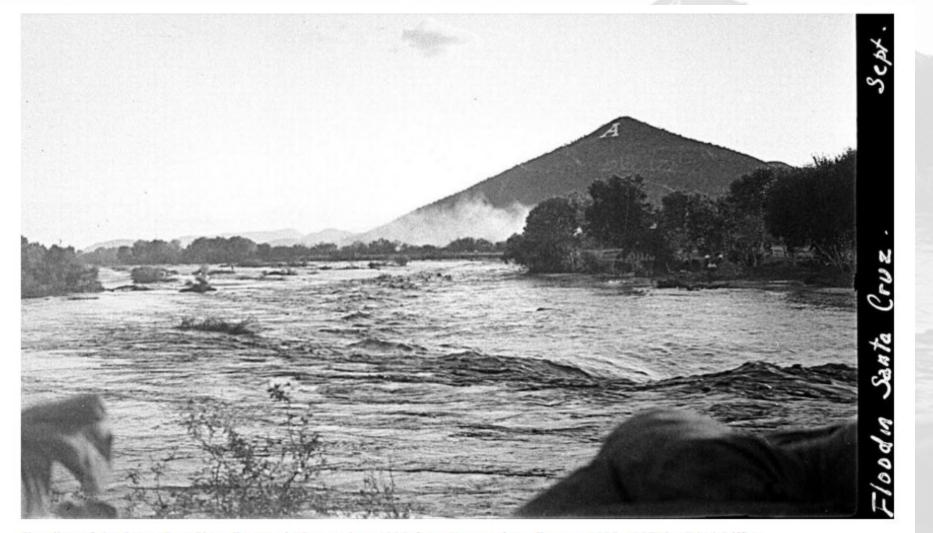
5. What is the relationship between the river and groundwater?

6. From your perspective, what is the significance of having water in the Santa Cruz River in downtown Tucson?

No Place for Isolation: Life in the Desert

https://www.youtube.com/watch?v=gvlNgqQJLGI

Photos


30+ historic photos of the Santa Cruz River through Tucson

Rick Wiley Jul 28, 2023 Updated May 28, 2024

The Santa Cruz River was the lifeblood of Tucson for early Native Americans, the Spanish Conquistadores and early American settlers. It languished for years and became dry most of the year as the water table dropped.

It also became a neglected trench and trash heap. City leaders envisioned something better. By the early 1970s, the Army Corps of Engineers was studying the feasibility of channeling the river and creating a park. In 1977, work began.

The Santa Cruz River 1926

Flooding of the Santa Cruz River, Tucson, in September, 1926, from "Letters from Tucson, 1925-1927" by Ethel Stiffler. Courtesy Roger E. Carpenter

New way of using Reclaimed Water: The Santa Cruz Heritage Project

Johnny Dearmore skips a rock in the Santa Cruz River as reclaimed water is released into the channel at 29th Street as part of the Santa Cruz River Heritage Project on June 24, 2019. The release of effluent is the city's first effort to restore a fraction of the river's flow since groundwater pumping dried it up in the 1940s.

Floodin Santa Cru:

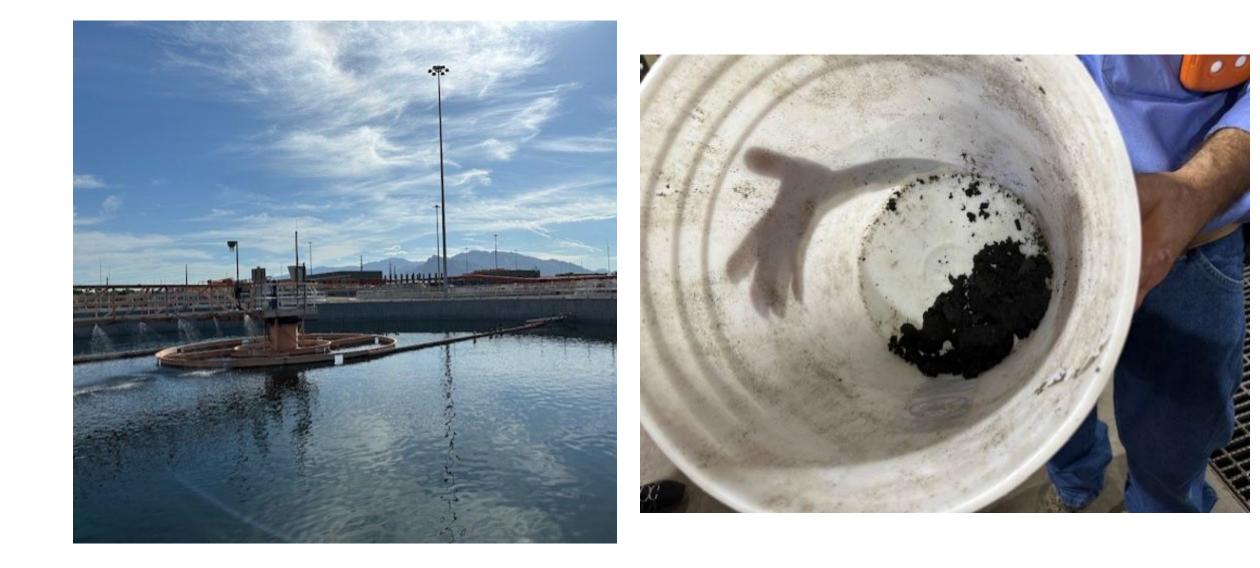
Flooding of the 1

Learning Target:

I am learning about the early years of the Santa Cruz River and how Agua Nueva Reclamation Facility is doing to rebuild the Santa Cruz River.

Success criteria:

I can explain what the Agua Nueva Reclamation Facility does and how it is rebuilding the Santa Cruz river.


Agua Nueva Water Reclamation Facility Video

https://www.youtube.com/watch?v=vcR2bzcSQ5o

Agua Nueva Water Reclamation Facility

Agua Nueva Reclamation Facility

Agua Nueva Water Reclamation Facility

Santa Cruz river being recreated through reclaimed water

Heritage

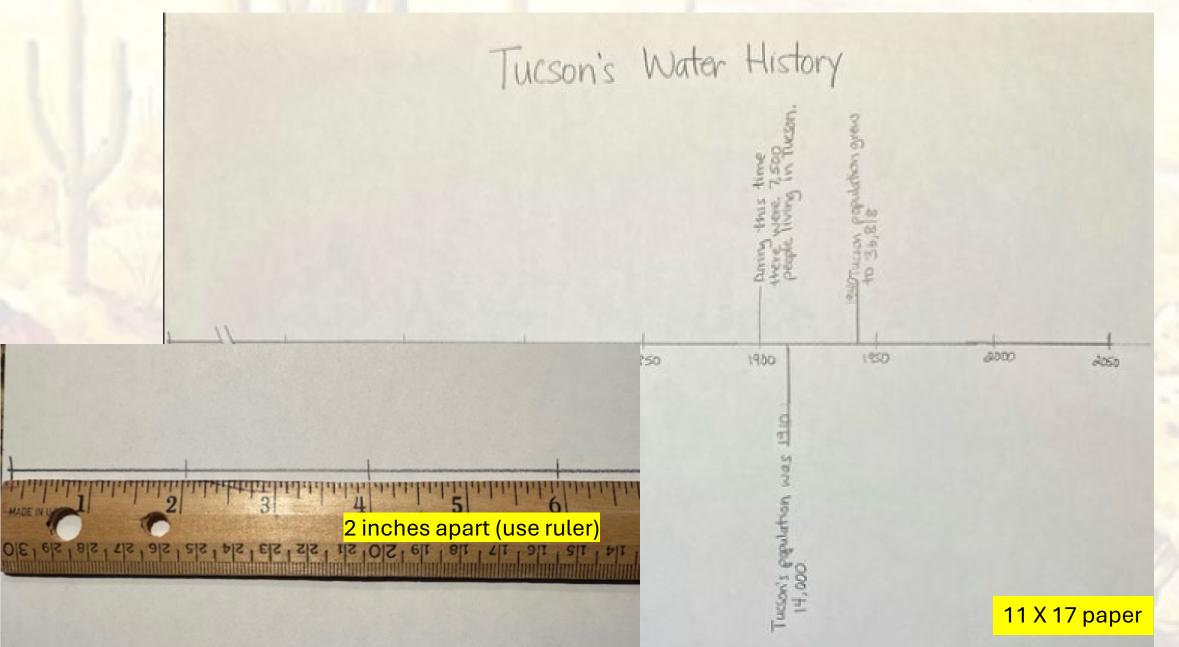
Crossroads at Silverbell District Park

The Santa Cruz River being recreated though reclaimed water

Sunset

Tangerine

Learning Target:


I can explain and create a timeline about Tucson's Water history.

Success criteria:

-I can explain how the Hohokam people used the Santa Cruz River to grow their crops.

- -I can explain how Tucson's population grew over time.
- -I can explain why the Santa Cruz River stopped flowing.
- -I can explain how reclaimed water is bringing back the Santa Cruz River.

Timeline

Tucson's Water History

Map to Tucson's Water history

~200 mid ~1400s

For thousands of years, the Hohokam lived near the base of the Tucson Mountains, close to the Santa Cruz River, which flowed year-round. They built irrigation canals to channel water from the river to the fields and villages. The Hohokam figured out when beat to plant seeds and harvest their crops.

The Tohono O'odham, or desert people, and the Akimel O'odham, or river people are the descendants of the Hohokam.

~mid 1700s

In 1775, Spanish settlers founded the Presidio San Agustin del Tucson, with just a couple hundred people living within the fort. The settlers carried buckets of water from the always flowing river.

~mid 1800s

People continued to move to Tucson, traveling via horse and wagon, and later, by <u>trains</u>! They lived further from the river and got their water from shallow wells dug by hand. Water was also delivered in canvas bags carried on donkeys, or later in horsedrawn metal-lined carts.

1882-early 1900s:

The Tucson Water Company, known today as Tucson Water, pumped the first piped water to homes and businesses in 1882. By 1900, there were 7,500 people living in Tucson.

By 1910, Tucson's population had doubled to approximately 14,000 people and in 1940 its population increased to 36,818.

1950s:

Technology improved as Tucson's population and industry continued to grow. This meant that more water wells were drilled faster and deeper. By this time the Santa Cruz River gradually stopped flowing year around.

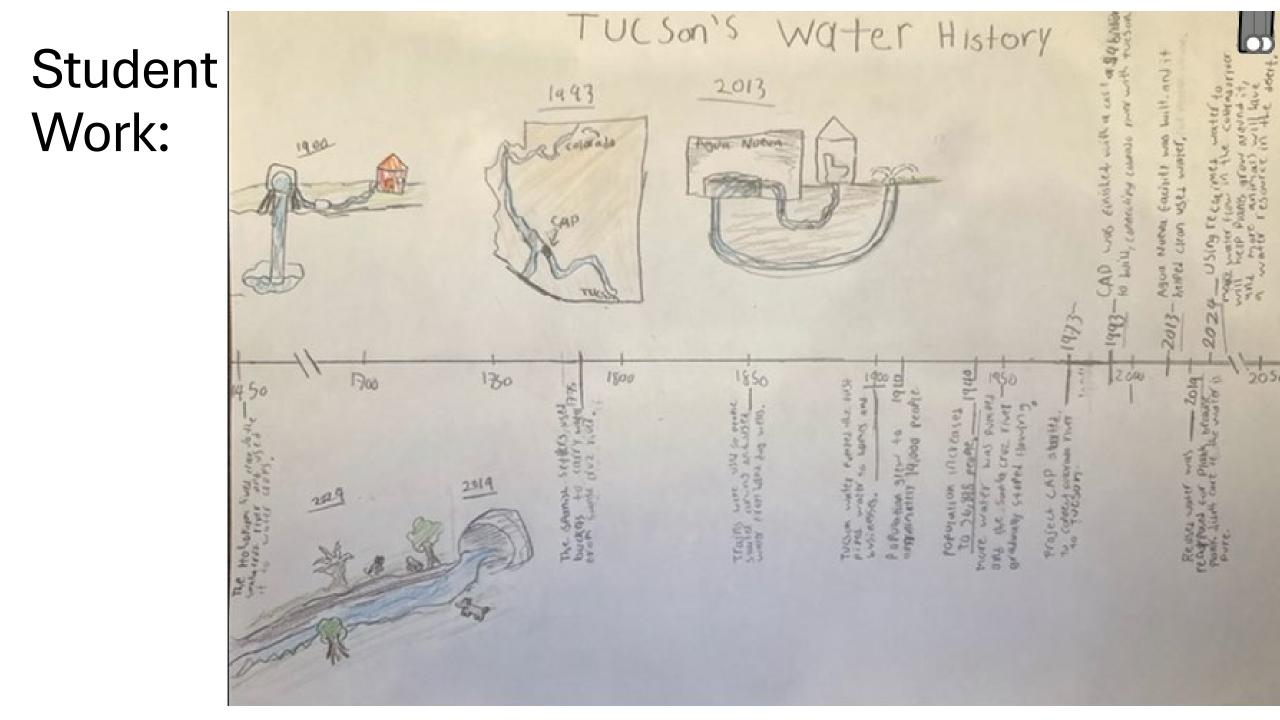
1970s-1990s:

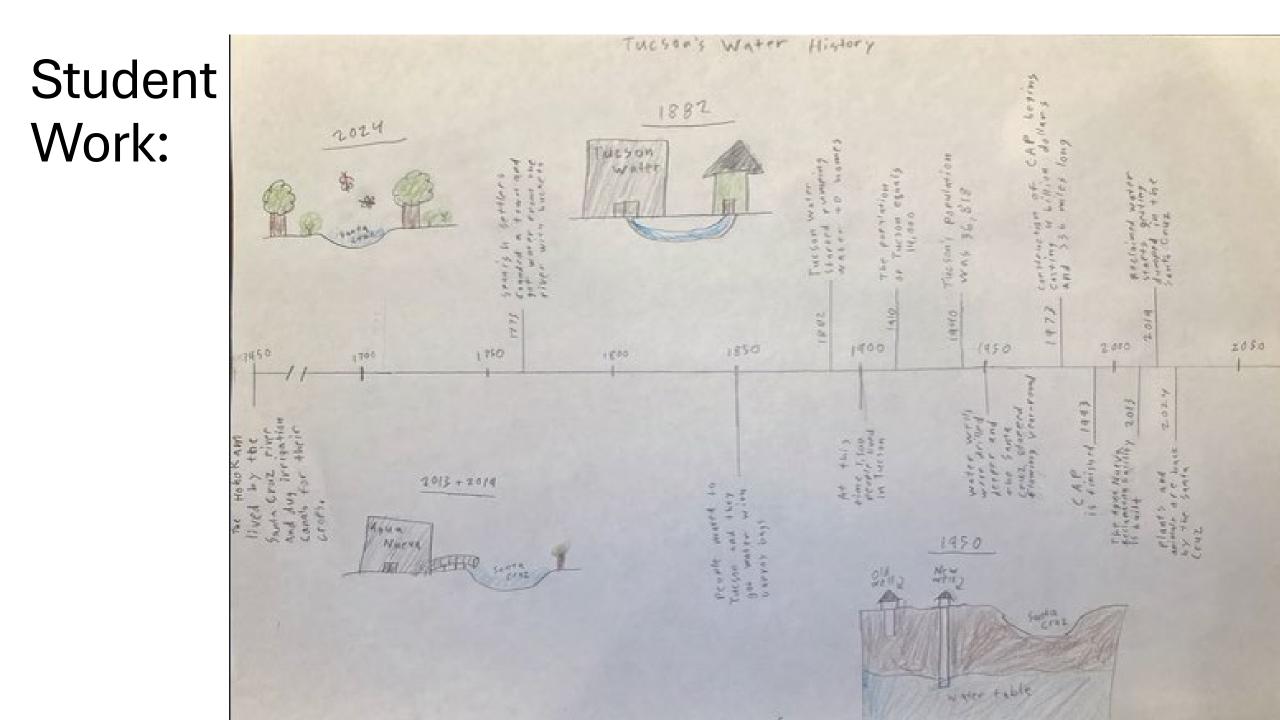
By this time people started to realize that their water usage couldn't keep up with their water demand, so Tucson began to plan for the future. In 1973, the construction of the Central Arizona Project (CAP) began at Lake Havasu, and it was completed twenty years later south of Tucson. This entire project cost over \$4 billion to construct the 336-mile canal.

CAP helps deliver water from the Colorado River to Tucson. Approximately 80% of the water we use comes from CAP and 20% comes from groundwater. However, both waters are mixed and stored together in the aquifers and later pumped to homes.

In 1984, Tucson started to reuse its water by filtering it, cleaning it and then using it for irrigation purposes in schoolyards, parks, and golf courses. This water is called reclaimed water. This reclaimed water does not go through the same rigorous testing that drinking water goes through. This water cannot be used for drinking purposes. If this water is not needed at any time, it is stored in aquifers to be used in the future. So far there are 1000 customers in Tucson that use reclaimed water for their irrigation.

Today:

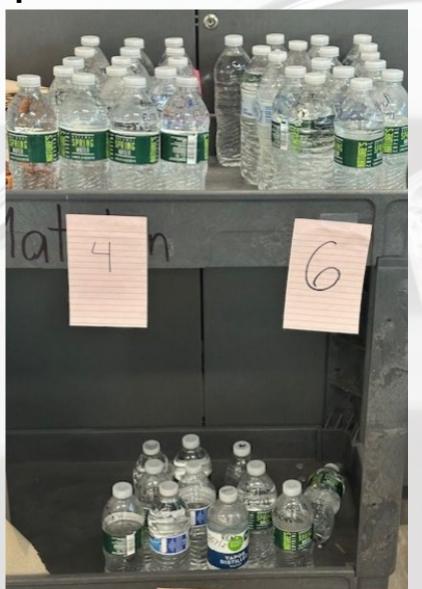

Almost 1 million people live in the Tucson area, using groundwater, Colorado River water, reclaimed water, and harvested rainwater. In 2019, the wastewater treatment facility called Agua Nueva Reclamation Facility (build in 2013) started to discharge 5% or 2.8 million gallons per day of its reclaimed water to the Santa Cruz River Heritage Project. This discharge allows Tucson to recreate the ecosystem that existed before the river dried out. We can appreciate the riparian plants (plants that grow along the river or body of water), as well as the fish, birds, turtles, and all the insects that live along the Santa Cruz River (we will visit the Santa Cruz River in our upcoming field trip).


The Agua Nueva Reclamation Facility sends 95% of the effluent water to Tucson Water and they send it to the aquifers as recharge credit for later use.

Tucson's Water History

Directions: 1. Using the reading "Map to Tucson' Water history" located in *Canvas* (or in the back of this paper) write the importance of these <u>years</u> incomplete sentences. The questions are meant to help <u>you focus</u> on what to write. The writing needs to be in your own words and in complete sentences. 2. You also need at least <u>five</u> drawings highlighting Tucson's water history (you pick the years you want to illustrate in your timeline).

Year	What happened during this year
1450	Who lived here and how did they grow their crops?
1775	What did the Spanish settlers do and how did they gather water?
1850	How did Tucson's population grow and how did they obtain water?
1882	What did Tucson Water do?
1900	How many people lived in Tucson this year?
1910	How many people lived in Tucson this year?
1940	How many people lived in Tucson this year?
1950	What happened to the water wells? What happened to the Santa Cruz River?
1973	What was constructed during this time? Why was this needed? How much did
	it cost and how big was the canal?
1984	What did Tucson do to save drinkable water and where does this water go?
1993	What started to flow in Phoenix and Tucson? (hint: starts at Lake Havasu)
2013	What was built this year and why is this facility important?
2019	There is a new way of using reclaimed water. What is it? Explain.
2024	What are the benefits of discharging reclaimed water into the Santa Cruz
	River?


Learning Target:

I am learning what is in my tap water so I can appreciate what *Tucson Water* does.

Success criteria:

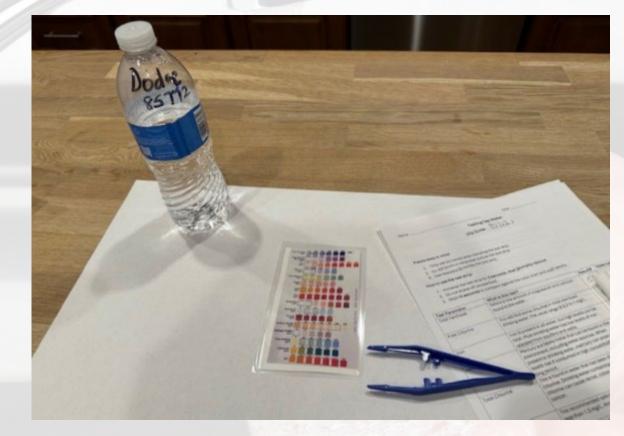
I can explain what is in tap water and if my tap water is safe to drink.

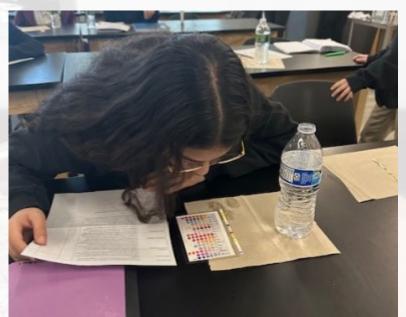
Student's tap water


Drinking Water Test Kit


Test Parameter	Normal Range
Total hardness (ppm)	Any
Free Chlorine (ppm)	0(0) or 0.5(1) or 1(2) or 3(6)
Iron (ppm)	0 or 5
Mercury (ppm)	0 or 0.002
Total Chlorine (ppm)	0 or 0.5 or 1 or 3
Copper (ppm)	0 or 0.5 or 1
Lead (ppm)	0
Zinc (ppm)	0 or 2 or 5
Manganese(ppm)	0 or 0.1
QAC/QUAT (ppm)	5 or 10
Floride (ppm)	0
Sodium Chloride(ppm)	0 or 50 or 75 or 100 or 150 or 250
Hydrogen Sulfide (ppm)	0
Total Alkalinity (ppm)	40 or 80 or 120 or 180
Carbonate (ppm)	40 or 80 or 120
pН	6.4 or 6.8 or 7.2 or 7.6 or 8.2

15 SECONDS TO COMPARE AGAINST


THE COLOR CHART AND READ RESULTS



Testing our Tap Water

Name:

Date:

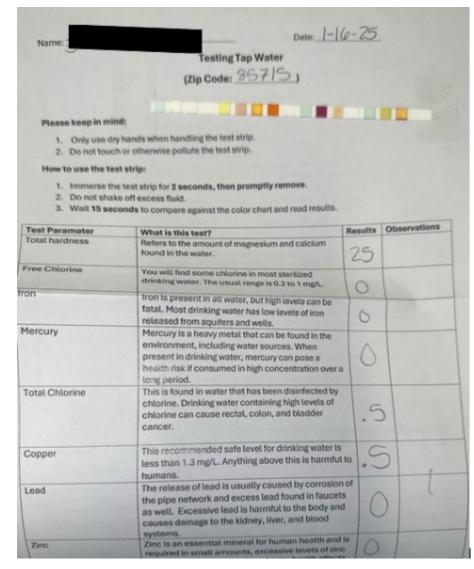
Testing Tap Water

(Zip Code: _____)

Please keep in mind:

- 1. Only use dry hands when handling the test strip.
- 2. Do not touch or otherwise pollute the test strip.

How to use the test strip:

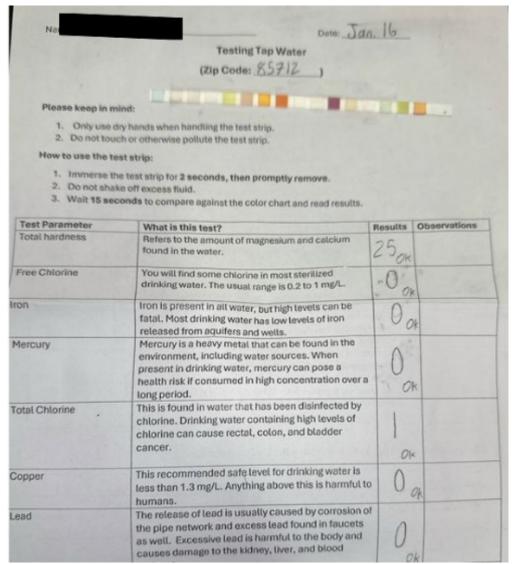

- 1. Immerse the test strip for 2 seconds, then promptly remove.
- 2. Do not shake off excess fluid.
- 3. Wait 15 seconds to compare against the color chart and read results.

Test Parameter	What is this test?	Results	Observations
Total hardness	Refers to the amount of magnesium and calcium		
	found in the water.		
Free Chorine	You will find some chlorine in most sterilized		
	drinking water. The usual range is 0.2 to 1 mg/L.		
Iron	Iron is present in all water, but high levels can be		
	fatal. Most drinking water has low levels of iron		
	released from aquifers and wells.		
Mercury	Mercury is a heavy metal that can be found in the		
	environment, including water sources. When		
	present in drinking water, mercury can pose a		
	health risk if consumed in high concentration over a		
	long period.		
Total Chlorine	This is found in water that has been disinfected by		
	chlorine. Drinking water containing high levels of		
	chlorine can cause rectal, colon, and bladder		
	cancer.		
Copper	This recommended safe level for drinking water is		
	less than 1.3 mg/L. Anything above this is harmful to		
	humans.		
Lead	The release of lead is usually caused by corrosion of		
	the pipe network and excess lead found in faucets		
	as well. Excessive lead is harmful to the body and		
	causes damage to the kidney, liver, and blood		
	systems.		
Zinc	Zinc is an essential mineral for human health and is		
	required in small amounts, excessive levels of zinc		
	in drinking water can lead to adverse health effects.		

Manganese	In the United States, the EPA has set a secondary	
	maximum contaminant level for manganese 0.05	
	mg/L.	
QAC/QUAT	QUAT (Quaternary Ammonium Compounds) or QAC	
	(Quaternary Ammonium Compounds) refers to a	
	group of chemical compounds, they are widely used	
	as disinfectants and preservatives due to their	
	antimicrobial properties.	
Fluoride	Water additive which promotes strong teeth.	
Sodium Chloride	High levels of sodium in drinking water can be a	
	concern for individuals on sodium restricted diets or	
	those with certain health conditions such as	
	hypertension (high blood pressure) or kidney	
	problems. It is worth noting that the sodium levels in	
	drinking water are generally much lower compared	
	to the amount typically consumed through food.	
Hydrogen Sulfide	Hydrogen sulfide is not considered toxic at the	
	concentrations typically found in drinking water.	
	However, it can cause some short-term effects like	
	nausea and diarrhea when consumed at high levels.	
Total alkalinity	This measures water's ability to deal with hydrogen	
	and acid ions. The base in water keeps the pH	
	stable. If water is too alkaline, it will taste like soda	
	water. This type of water will damage your water	
	pipes and dry out your skin.	
Carbonate	Carbonate occurs naturally in the earth's crust.	
	Heath effects: Too much intake can lead to nausea,	
	vomiting, or loss of appetite.	
pН	While there is not an official guidance for pH in	
	drinking water. A high pH affects the taste of your	
	water and low pH makes your water more corrosive.	
	The sanatory Standards for Drinking Water indicate	
	drinking water should have a pH of between 6.4 and	
	8.2	

What conclusions can you make from your water testing sample:

Student Work:



Manganese	maximum contaminant level for manganese 0.05 mg/L.	0
QAC/QUAT	QUAT (Quaternery Ammonium Compounds) or QAC (Quaternery Ammonium Compounds) refers to a group of chemical compounds, they are widely used as disinfectants and preservatives due to their antimicrobial properties.	10
Ruoride	Water additive which promotes strong teeth.	0
Sodium Chloride	High levels of sodium in drinking water can be a concern for individuals on sodium restricted diets or those with certain health conditions such as hypertension (high blood pressure) or kidney problems. It is worth noting that the sodium levels in drinking water are generally much lower compared to the amount typically consumed through food.	50
Hydrogen Sulfide	Hydrogen sulfide is not considered toxic at the concentrations typically found in drinking water. However, it can cause some short-term effects like nausea and diarrhea when consumed at high levels.	0
Total alkalinity	This measures water's ability to deal with hydrogen and acid ions. The base in water keeps the pH stable. If water is too alkalino, it will taste like soda water. This type of water will damage your water pipes and dry out your skin.	40
Carbonate	Carbonate occurs naturally in the earth's crust. Heath effects: Too much intake can lead to nausea, vomiting, or loss of appetite.	45
рН	While there is not an official guidance for pH in drinking water. A high pH affects the taste of you water and low pH makes your water more corrosive. The sanatory Standards for Drinking Water indicate drinking water should have a pH of between 6.4 and 8.2	60

What conclusions can you make from your water testing sample:

I Can conclude that my water is percently normal and safe to drink. I have no concerns.

Student Work:

Manganese	In the United States, the EPA has set a secondary maximum contaminant level for manganese 0.05 mg/L.	Oa
QAC/QUAT	QUAT (Quaternary Ammonium Compounds) or QAC (Quaternary Ammonium Compounds) refers to a group of chemical compounds, they are widely used as disinfectants and preservatives due to their antimicrobial properties.	5 _{0k}
Fluoride	Water additive which promotes strong teeth.	0 1
Sodium Chloride	High levels of sodium in drinking water can be a concern for individuals on sodium restricted diets or those with certain health conditions such as hypertension (high blood pressure) or kidney problems. It is worth noting that the sodium levels in drinking water are generally much lower compared to the amount typically consumed through food.	250 0k
Hydrogen Sulfide	Hydrogen sulfide is not considered toxic at the concentrations typically found in drinking water. However, it can cause some short-term effects like	0.
Total alkalinity	nausea and diarrhea when consumed at high levels. This measures water's ability to deal with hydrogen and acid ions. The base in water keeps the pH stable. If water is too alkaline, it will taste like soda water. This type of water will damage your water pipes and dry out your skin.	40
Carbonate	Carbonate occurs naturally in the earth's crust. Heath effects: Too much intake can lead to nausea, vomiting, or loss of appetite.	400
н	While there is not an official guidance for pH in drinking water. A high pH affects the taste of you water and low pH makes your water more corrosive The sanatory Standards for Drinking Water indicate drinking water should have a pH of between 6.4 and 8.2	10.11
-	scan you make from your water testing sample: usion, nothing is wrong uerything was pormali	with may

Lesson 10

Learning Target:

I am learning about the turtles that live in the Santa Cruz River.

Success criteria:

I can make line graphs for the turtles found along the Santa Cruz River in 2022, 2023, and 2024.

Meet the Turtles of the Santa Cruz River

https://www.youtube.com/watch?v=iGJ1CMMuKNQ

Turtles that live in the Santa Cruz River

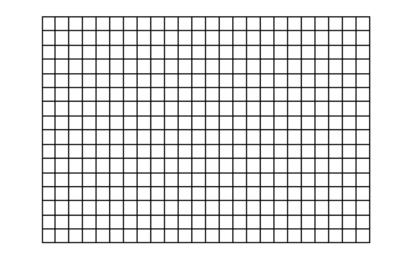
Name:

Turtles Captured by Site Per Year (combined across traps within site and year)

Site #1	Year	Sonoran Mud Turtles (native to Tucson)	Spiny Softshell (native to the eastern United States)	Pond sliders
Codete	2022	0	21	1
Cortero	2023	1	12	1
Cortace	2024	0	18	3

Title:

											Γ
											Γ
											L
Ш											L
Ц											L
											L
											L
											L
											L
											L


Conclusion: What can we conclude about the reclaimed water that is being discharged into the Santa Cruz River based on the turtle data above? Why do you think there are differences between species? Explain.

Your graph must have the following: 1.Title 2. "y" and "x" axis labeled 3.Legend 4. Graph 5. Conclusion

Turtles Captured by Site Per Year (combined across traps within site and year)

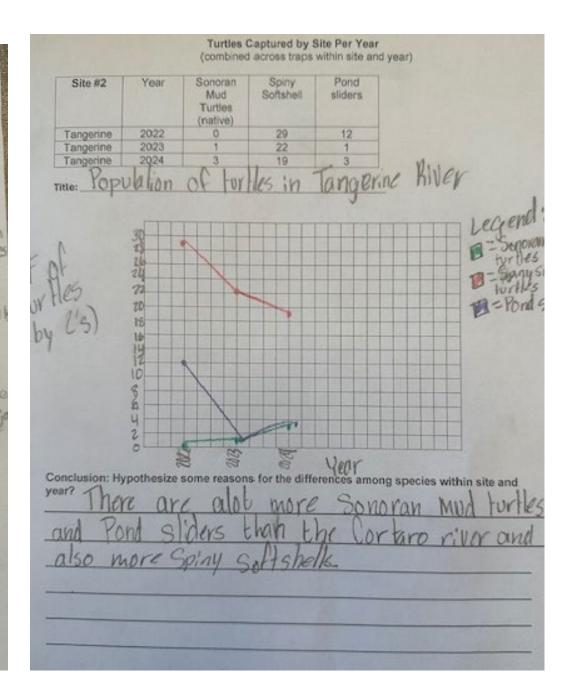
Site #2	Year	Sonoran Mud Turtles (native)	Spiny Softshell	Pond sliders
Tangerine	2022	0	29	12
Tangerine	2023	1	22	1
Tangerine	2024	3	19	3

Title:

Conclusion: Hypothesize some reasons for the differences among species within site and year?

Your graph must have the following: 1.Title 2. "y" and "x" axis labeled 3.Legend <mark>4. Graph</mark> 5. Conclusion

Student Work:


Site #1	Year	Sonoran Mud Turtles (native to Tucson)	Spiny Softshell (native to the eastern United States)	Pond sliders	
Cortaro	2022	0	21	1	
Cortaro	2023	1	12	1	
Cortaro	2024	0	18	3	
					Legend Mud Turr Spiny Sofi
14		-		이번 25 25 3 25 25 27 번 25 번 25 번 25 10 10 10 10 10 10 10 10 10 10 10 10 10	spiny Soft
10					Pond Slid
2 "		,			
I "					
72					
IT 6-					
4					
0-	-				
0-1	2012	2023	201	W	
Conclusion: W	hat can we	conclude about	t the reclaime	d water that is bei	ng discharged into
differences he	tween speci	es? Explain.		Why do you think	
As more	and more	water is d	umpedir	nto the Santa	Cruz, it allows
for orac	nisms su	where the	o turtle	is to thrive	in this
PALAVAAA	nent Thi	ere is N	differer	nce between	n Species

	ICTO55	ed by s traps v	within 1	no and	year)	-				
nativ	ve to son)	So (na the U	ipiny ftshell dive to easten inited tates)		nd slide	rs				
0)		21		1					
1			12	100	1					
0)		18		3					
	1		~					Por	d	\$1,
a th	2.0 de ab e turt plain	out th	a abov	simed re? W	water hy do	yout	nink t	nere	are	
	e				nd					
			1100	1	al.	a	to	tal	1	or

Student Work:

(combined across traps within site and year) Pond Spiny Sonoran Site #2 Year sliders Softshell Mud Turtles (native) 12 29 2022 0 Tangerine 22 2023 Tangerine is in Taugerine in the santa civiz River 2024 Tangerine Turtle populations Title: = Sonoran Mud Furtles 24 of Opina 20 13 Coffiche offles 16 12 B 2023 2024 0.022 Conclusion: Hypothesize some reasons for the differences among species within site and there are move think turtles nat area necause This where 15 More water is, which means More ire. th there al Iders. D-ecause rond notive and are dying CASE NRM not

Turtles Captured by Site Per Year

